phases to noncyclic evolution

نویسنده

  • M. Moutinho
چکیده

We show that the difference of adiabatic phases, that are basis-dependent, in noncyclic evolution of non-degenerate quantum systems have to be taken into account to give the correct interference result in the calculation of physical quantities in states that are a superposition of instantaneous eigenstates of energy. To verify the contribution of those adiabatic phases in the interference phenomena, we consider the spin-1/2 model coupled to a precessing external magnetic field. In the model, the adiabatic phase increases in time up to reach the difference of the Berry’s phases of the model when the external magnetic field completes a period.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contribution of adiabatic phases to noncyclic evolution

We show that the difference of adiabatic phases, that are basis-dependent, in noncyclic evolution of nondegenerate quantum systems have to be taken into account to give the correct interference result in the calculation of physical quantities in states that are a superposition of instantaneous eigenstates of energy. To verify the contribution of those adiabatic phases in the interference phenom...

متن کامل

Geometric phases for mixed states in interferometry.

We provide a physical prescription based on interferometry for introducing the total phase of a mixed state undergoing unitary evolution, which has been an elusive concept in the past. We define the parallel transport condition that provides a connection form for obtaining the geometric phase for mixed states. The expression for the geometric phase for mixed state reduces to well known formulas...

متن کامل

Extending the quantal adiabatic theorem: Geometry of noncyclic motion

We show that a noncyclic phase of geometric origin has to be included in the approximate adiabatic wave function. The adiabatic noncyclic geometric phase for systems exhibiting a conical intersection as well as for an AharonovBohm situation is worked out in detail. A spin−12 experiment to measure the adiabatic noncyclic geometric phase is discussed. We also analyze some misconceptions in the li...

متن کامل

Noncyclic Geometric Phase and Its Non-Abelian Generalization

We use the theory of dynamical invariants to yield a simple derivation of noncyclic analogues of the Abelian and non-Abelian geometric phases. This derivation relies only on the principle of gauge invariance and elucidates the existing definitions of the Abelian noncyclic geometric phase. We also discuss the adiabatic limit of the noncyclic geometric phase and compute the adiabatic non-Abelian ...

متن کامل

Geometric phases and hidden local gauge symmetry

The analysis of geometric phases associated with level crossing is reduced to the familiar diagonalization of the Hamiltonian in the second quantized formulation. A hidden local gauge symmetry, which is associated with the arbitrariness of the phase choice of a complete orthonormal basis set, becomes explicit in this formulation (in particular, in the adiabatic approximation) and specifies phys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009